26 research outputs found

    Assessing the inhibitory activity of culture supernatants against foodborne pathogens of two psychrotrophic bacteria isolated from river trout

    Full text link
    There is a need for new natural products with antimicrobial activity to treat multidrug resistant bacteria that can cause human illness. Some of them are foodborne pathogens. Two different Gram-negative psychrotrophic strains were isolated from healthy trout river samples (Salmo trutta). Based on phenotypic characterization, proteomics, genotyping and phylogenetic analyses of 16 rRNA gene, strains TCPS12 and TCPS13 were identified as Shewanella baltica and Pseudomonas fragi, respectively. Both of them produced an exopolysaccharide that showed antimicrobial activity against four foodborne pathogens. P. fragi supernatant (AS13) showed higher antimicrobial activity than S. baltica supernatant (AS12) against all tested pathogens. The stability of the antimicrobial activity of AS13 was assessed against Enterococcus faecalis ATCC 29212 under different conditions. This solution was stable when exposed for 30 min to temperatures ranging from 40 to 100 °C. In addition, it retained its activity within a pH range of 2-8 during 2 h of incubation, showing higher activity at pH 6. Serine proteases and α-amylase inactivated significantly the antimicrobial activity of AS13, suggesting that the active molecule could most likely be a glycoprotein. These products are interesting for their possible application as biopreservatives in the food industry. Keywords: Antimicrobial activity; EPS production; Food preservation; Pseudomonas fragi; Shewanella baltica

    Allelic diversity and population structure in Vibrio cholerae O139 Bengal based on nucleotide sequence analysis

    Full text link
    Comparative analysis of gene fragments of six housekeeping loci, distributed around the two chromosomes of Vibrio cholerae, has been carried out for a collection of 29 V. cholerae O139 Bengal strains isolated from India during the first epidemic period (1992 to 1993). A toxigenic O1 ElTor strain from the seventh pandemic and an environmental non-O1/non-O139 strain were also included in this study. All loci studied were polymorphic, with a small number of polymorphic sites in the sequenced fragments. The genetic diversity determined for our O139 population is concordant with a previous multilocus enzyme electrophoresis study in which we analyzed the same V. cholerae O139 strains. In both studies we have found a higher genetic diversity than reported previously in other molecular studies. The results of the present work showed that O139 strains clustered in several lineages of the dendrogram generated from the matrix of allelic mismatches between the different genotypes, a finding which does not support the hypothesis previously reported that the O139 serogroup is a unique clone. The statistical analysis performed in the V. cholerae O139 isolates suggested a clonal population structure. Moreover, the application of the Sawyer's test and split decomposition to detect intragenic recombination in the sequenced gene fragments did not indicate the existence of recombination in our O139 population

    Biochemical identification and numerical taxonomy of Aeromonas spp. isolated from environmental and clinical samples in Spain

    Get PDF
    Aims: To study the phenotypic characteristics of Aeromonas spp. from environmental and clinical samples in Spain and to cluster these strains by numerical taxonomy. Methods and Results: A collection of 202 Aeromonas strains isolated from bivalve molluscs, water and clinical samples was tested for 64 phenotypic properties; 91% of these isolates were identified at species level. Aeromonas caviae was predominant in bivalve molluscs and Aerom. bestiarum in freshwater samples. Cluster analyses revealed eight different phena: three containing more than one DNA-DNA hybridization group but including strains that belong to the same phenospecies complex (Aerom. hydrophila, Aerom. sobria and Aerom. caviae), Aerom. encheleia, Aerom. trota and three containing unidentified Aeromonas strains isolated from bivalve molluscs. Conclusions: Aeromonas spp. are widely distributed in environmental and clinical sources. A selection of 16 of the phenotypical tests chosen allowed the identification of most isolates (91%), although some strains remain unidentified, mainly isolates from bivalve molluscs, suggesting the presence of new Aeromonas species. Numerical taxonomy was not in total concordance with the identification of the studied strains. Significance and Impact of the Study: Numerical taxonomy of Aeromonas strains isolated from different sources revealed the presence of potentially pathogenic Aeromonas spp., especially in bivalve molluscs, and phena with unidentified strains that suggest new Aeromonas species

    Divergent evolution and purifying selection of the flaA gene sequences in Aeromonas

    Get PDF
    BACKGROUND: The bacterial flagellum is the most important organelle of motility in bacteria and plays a key role in many bacterial lifestyles, including virulence. The flagellum also provides a paradigm of how hierarchical gene regulation, intricate protein-protein interactions and controlled protein secretion can result in the assembly of a complex multi-protein structure tightly orchestrated in time and space. As if to stress its importance, plants and animals produce receptors specifically dedicated to the recognition of flagella. Aside from motility, the flagellum also moonlights as an adhesion and has been adapted by humans as a tool for peptide display. Flagellar sequence variation constitutes a marker with widespread potential uses for studies of population genetics and phylogeny of bacterial species. RESULTS: We sequenced the complete flagellin gene (flaA) in 18 different species and subspecies of Aeromonas. Sequences ranged in size from 870 (A. allosaccharophila) to 921 nucleotides (A. popoffii). The multiple alignment displayed 924 sites, 66 of which presented alignment gaps. The phylogenetic tree revealed the existence of two groups of species exhibiting different FlaA flagellins (FlaA1 and FlaA2). Maximum likelihood models of codon substitution were used to analyze flaA sequences. Likelihood ratio tests suggested a low variation in selective pressure among lineages, with an omega ratio of less than 1 indicating the presence of purifying selection in almost all cases. Only one site under potential diversifying selection was identified (isoleucine in position 179). However, 17 amino acid positions were inferred as sites that are likely to be under positive selection using the branch-site model. Ancestral reconstruction revealed that these 17 amino acids were among the amino acid changes detected in the ancestral sequence. CONCLUSION: The models applied to our set of sequences allowed us to determine the possible evolutionary pathway followed by the flaA gene in Aeromonas, suggesting that this gene have probably been evolving independently in the two groups of Aeromonas species since the divergence of a distant common ancestor after one or several episodes of positive selection. REVIEWERS: This article was reviewed by Alexey Kondrashov, John Logsdon and Olivier Tenaillon (nominated by Laurence D Hurst)

    Prediction of whole-genome DNA G+C content within the genus Aeromonas based on housekeeping gene sequences

    Get PDF
    Different methods are available to determine the G+C content (e.g. thermal denaturation temperature or high performance liquid chromatography, HPLC), but obtained values may differ significantly between strains, as well as between laboratories. Recently, several authors have demonstrated that the genomic DNA G+C content of prokaryotes can be reliably estimated from one or several protein coding gene nucleotide sequences. Few G+C content values have been published for the Aeromonas species described and the data, when available, are often incomplete or provide only a range of values. Our aim in this current work was twofold. First, the genomic G+C content of the type or reference strains of all species and subspecies of the genus Aeromonas was determined with a traditional experimental method in the same laboratory. Second, we wanted to see if the sequence-based method to estimate the G+C content described by Fournier et al. [7] could be applied to determine the G+C content of the different species of Aeromonas from the sequences of the genes used in taxonomy or phylogeny for this genus

    The reference strain Aeromonas hydrophicla CIP 57.50 should be reclassified as Aeromonas salmonicida CIP 57.50

    Get PDF
    The use of reference strains is a critical element for the quality control of different assays, from the development of molecular methods to the evaluation of antimicrobial activities. Most of the strains used in these assays are not type strains and some of them are cited erroneously because of subsequent reclassifications and descriptions of novel species. In this study, we propose that the reference strain Aeromonas hydrophila CIP 57.50 be reclassified as Aeromonas salmonicida CIP 57.50 based on phenotypic characterization and sequence analyses of the cpn60, dnaJ, gyrB and rpoD genes

    Species delimitation, phylogenetic relationships, and temporal divergence model in the genus Aeromonas

    Get PDF
    The definition of species boundaries constitutes an important challenge in biodiversity studies. In this work we applied the Generalized Mixed Yule Coalescent (GMYC) method, which determines a divergence threshold to delimit species in a phylogenetic tree. Based on the tree branching pattern, the analysis fixes the transition threshold between speciation and the coalescent process associated with the intra-species diversification. This approach has been widely used to delineate eukaryote species and establish their diversification process from sequence data. Nevertheless, there are few examples in which this analysis has been applied to a bacterial population. Although the GMYC method was originally designed to assume a constant (Yule) model of diversification at between-species level, it was later evaluated simulating other conditions. Our aim was therefore to determine the species delineation in Aeromonas using the GMYC method and asses which model best explains the speciation process in this bacterial genus. The application of the GMYC method allowed us to clearly delineate the Aeromonas species boundaries, even in the controversial groups, such as the A. veronii or A. media species complexes

    Direct evidence of recombination in the recA gene of Aeromonas bestiarum

    Get PDF
    tTwo hundred and twenty-one strains representative of all Aeromonas species were characterized usingthe recA gene sequence, assessing its potential as a molecular marker for the genus Aeromonas. The inter-species distance values obtained demonstrated that recA has a high discriminatory power. Phylogeneticanalysis, based on full-length gene nucleotide sequences, revealed a robust topology with clearly sepa-rated clusters for each species. The maximum likelihood tree showed the Aeromonas bestiarum strains ina well-defined cluster, containing a subset of four strains of different geographical origins in a deep inter-nal branch. Data analysis provided strong evidence of recombination at the end of the recA sequences inthese four strains. Intergenomic recombination corresponding to partial regions of the two adjacent genesrecA and recX (248 bp) was identified between A. bestiarum (major parent) and Aeromonas eucrenophila(minor parent). The low number of recombinant strains detected (1.8%) suggests that horizontal flowbetween recA sequences is relatively uncommon in this genus. Moreover, only a few nucleotide differ-ences were detected among these fragments, indicating that recombination has occurred recently. Finally,we also determined if the recombinant fragment could have influenced the structure and basic functionsof the RecA protein, comparing models reconstructed from the translated amino acid sequences of ourA. bestiarum strains with known Escherichia coli RecA structures

    Phylogenetic analysis and identification of Aeromonas species based on sequencing of the cpn60 universal target

    Get PDF
    An analysis of the universal target (UT) sequence from the cpn60 gene was performed in order to evaluate its usefulness in phylogenetic and taxonomic studies and as an identification marker for the genus Aeromonas. Sequences of 555 bp, corresponding to the UT region, were obtained from a collection of 35 strains representing all of the species and subspecies of Aeromonas. From the analysis of these sequences, a range of divergence of 0-23.3% was obtained, with a mean of 11.2±0.9 %. Comparative analyses between cpn60 and gyrB, rpoD and 16S rRNA gene sequences were carried out from the same Aeromonas strain collection. Sequences of the cpn60 UT region showed similar discriminatory power to gyrB and rpoD sequences. The phylogenetic relationships inferred from cpn60 sequence distances indicated an excellent correlation with the present affiliation of Aeromonas species with the exception of Aeromonas hydrophila subsp. dhakensis, which appeared in a separate phylogenetic line, and Aeromonas sharmana, which exhibited a very loose phylogenetic relationship to the genus Aeromonas. Sequencing of cpn60 from 33 additional Aeromonas strains also allowed us to establish intra- and interspecific threshold values. Intraspecific divergence rates were ≤3.5 %, while interspecific divergence rates fell between 3.7 and 16.9 %, excluding A. sharmana. In this study, cpn60 UT sequencing was shown to be a universal, useful, simple and rapid method for the identification and phylogenetic affiliation of Aeromonas strains

    Biocompatible Catanionic Vesicles from Arginine-Based Surfactants: A New Strategy to Tune the Antimicrobial Activity and Cytotoxicity of Vesicular Systems

    Get PDF
    Their stability and low cost make catanionic vesicles suitable for application as drug delivery systems. In this work we prepared catanionic vesicles using biocompatible surfactants: two cationic arginine-based surfactants (the monocatenary Nα-lauroyl-arginine methyl ester LAM and the gemini Nα,Nϖ-bis(Nα-lauroylarginine) α, ϖ-propylendiamide C3(CA)2) and three anionic amphiphiles (the single chain sodium dodecanoate, sodium myristate, and the double chain 8-SH). The critical aggregation concentration, colloidal stability, size, and charge density of these systems were comprehensively studied for the first time. These catanionic vesicles, which form spontaneously after mixing two aqueous solutions of oppositely charged surfactants, exhibited a monodisperse population of medium-size aggregates and good stability. The antimicrobial and hemolytic activity of the vesicles can be modulated by changing the cationic/anionic surfactant ratio. Vesicles with a positive charge efficiently killed Gram-negative and Gram-positive bacteria as well as yeasts; the antibacterial activity declined with the decrease of the cationic charge density. The catanionic systems also effectively eradicated MRSA (Methicillin-resistant Staphylococcus Aureus) and Pseudomonas aeruginosa biofilms. Interestingly, the incorporation of cholesterol in the catanionic mixtures improved the stability of these colloidal systems and considerably reduced their cytotoxicity without affecting their antimicrobial activity. Additionally, these catanionic vesicles showed good DNA affinity. Their antimicrobial efficiency and low hemolytic activity render these catanionic vesicles very promising candidates for biomedical application
    corecore